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We consider the nonlinear interactions between the steady Kelvin waves behind an
advancing ship and an (unsteady) ambient wave. It is shown that, for moderately steep
ship waves and/or ambient waves, third-order (quartet) resonant interaction among
the two wave systems could occur, leading to the generation of a new propagating
wave along a specific ray in the Kelvin wake. The wave vector of the generated wave
as well as the angle of the resonance ray are determined by the resonance condition
and are functions of the ship forward speed and the wave vector of the ambient wave.
To understand the resonance mechanism and the characteristics of the generated
wave, we perform theoretical analyses of this problem using two related approaches.
To obtain a relatively simple model in the form of a nonlinear Schrödinger (NLS)
equation for the evolution of the resonant wave, we first consider a multiple-scale
approach assuming locally discrete Kelvin wave components, with constant wave
vectors but varying amplitudes along the resonance ray. This NLS model captures
the key resonance mechanism but does not account for the detuning effect associated
with the wave vector variation of Kevin waves in the neighbourhood of the resonance
ray. To obtain the full quantitative features and evolution characteristics, we also
consider a more complete model based on Zakharov’s integral equation applied in
the context of a continuous wave vector spectrum. The resulting evolution equation
can be reduced to an NLS form with, however, cross-ray variable coefficients, on
imposing a narrow-band assumption valid in the neighbourhood of the resonance
ray. As expected, the two models compare well when wave vector detuning is small,
in the near wake close to the ray. To verify the analyses, direct high-resolution
simulations of the nonlinear wave interaction problem are obtained using a high-
order spectral method. The simulations capture the salient features of the resonance
in the near wake of the ship, with good agreements with theory for the location of
the resonance and the growth rate of the generated wave.

1. Introduction
Understanding of nonlinear resonant wave–wave interactions is important to the

modelling and prediction of ocean wave dynamics, and to the interpretation and
recognition of remotely sensed sea surface patterns. There have been a large number of
theoretical, computational and experimental studies on the fundamental mechanisms
of quartet and quintet resonant wave–wave interactions (e.g. Phillips 1960) and their
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effects upon ocean wave field evolutions in deep water (e.g. Hasselmann et al. 1988)
as well as in nearshore regions (e.g. Booij, Ris & Holthuijsen 1999; Liu & Yue 1998).

The extension of these studies to the case involving ship waves has been quite
limited. In particular, the problem of nonlinear resonant interactions of ship waves
with ambient waves has not been addressed. This is the subject of this paper. For
a ship moving at a constant forward speed in a calm water, it is well known from
classical linear theory (see e.g. Newman 1977) that the generated diverging and
transverse waves are confined within a wedge of ±19.5◦ behind the ship. These waves
are steady relative to the ship and the wave system is referred to as the Kelvin
wake. When free-surface nonlinearity is included, it is shown (Newman 1971) that
third-order quartet resonance does not occur among the diverging and transverse
waves except near the cusp lines, where they merge into the same wave. By including
third-order self-interactions, Akylas (1987) showed the presence of nonlinear steady-
state (diverging or transverse) waves near the cusp lines, which is qualitatively similar
to the classical linear result. These studies indicate that the steady ship waves even
with high steepness are dominated by the (linear) Kelvin wake.

The present work is motivated in part by observations of large-scale persistent
wave features within Kelvin ship wakes; for example, long, narrow V-shaped wave
features in satellite pictures (e.g. Fu & Halt 1982; Shemdin 1987; Munk, Scully-Power
& Zachariasen 1987; Reed & Milgram 2002), and oblique soliton-like wave envelopes
observed in the field (Brown et al. 1988). Such narrow V-shaped and/or soliton-like
wave patterns are of course not predicted by the classical Kelvin wave theory and a
number of studies have been devoted to understanding their generation mechanisms.
Peregrine (1971) found that narrow V-shaped waves can be generated due to refraction
of stern waves by the viscous shear flow in the near wake of the ship. By modelling
the ship waves as a result of combined effects of a source at the bow and a sink at the
stern, Hall & Buchsbaum (1990) showed that steady rays can be formed inside the
Kelvin wake. The positions of these rays as well as the wave vectors and strengths
of waves at these rays are dependent on the forward speed, the bow-to-stern length,
and the volume of the ship. If fluid stratification effect is considered, Tulin & Miloh
(1990) showed that narrow, steady V-shaped surface wave features can be formed
due to interactions with internal waves. Such features can also be due to unsteady
effects such as those associated with high-frequency heave/pitch oscillations of a ship
(Mei & Naciri 1991), general unsteady ship motions (Eggers & Schultz 1992), and
turbulent wake near the stern (Munk et al. 1987). All these mechanisms primarily
obtain in the context of linearized wave theory. The present investigation addresses
the possible role of nonlinear interactions that might be present among the steady
ship wave components and an ambient wave.

In this paper, we study the problem of nonlinear interactions of steady ship waves
with an ambient wave. In particular, we address the following three questions.

(a) Do steady ship waves interact resonantly with ambient waves?
(b) If so, what are the order of interactions and the mechanism of resonances?
(c) If so, what are the distinctive wave features in the ship wake associated with

such nonlinear interactions?
By theoretical analysis based on both the cubic Schrödinger equation and Zakharov

equation, we show that the (third-order) quartet resonant interactions of steady ship
waves and a plane ambient wave can be developed along certain rays in the Kelvin
wake of a ship. Under the resonance, a new propagating wave can be generated in
the vicinity of the resonance ray. The position of the resonance ray and the basic
characteristics of the generated wave can be determined from the resonance condition,



Interactions between Kelvin waves and ambient waves 173

depending on ship forward speed and wave vector of ambient waves. Significantly,
the generated wave possesses a distinctive solitary envelope across the resonance ray,
which extends to a long distance from the ship. The present theoretical analysis is
verified by a direct computation of the nonlinear interaction problem.

The paper is organized as follows. In § 2, we summarize the general resonance
conditions for third-order quartet resonant interaction between ship waves in a
Kelvin wake and a plane ambient wave. To understand the resonance mechanism,
we first apply, in § 3.1, a multiple-scale analysis to derive the cubic Schrödinger
equation for the evolution of the interacting wave components under the assumption
of constant wave vectors for the Kelvin waves in the neighbourhood of the resonance
ray. To account for the detuning effects on the resonance interactions due to spatial
variations of wave vectors within the Kelvin wake, we develop in § 3.2 a more complete
model starting with the third-order Zakharov differential-integral equation. In § 3.3,
we show that the evolution equation in § 3.2 can be reduced to an NLS form (with
different variable coefficients) in the neighbourhood of the resonance ray when the
characteristics of the ship waves and a narrow band assumption are applied. The
features of the theoretical predictions are compared and discussed in § 3.4. To verify
the theoretical analysis, we perform direct numerical simulations of the nonlinear
wave interaction problem in § 4 using a high-order spectral method, and compare the
computational results to theoretical prediction. In § 5, the conclusion is drawn.

2. Resonance conditions
We consider a ship moving at a constant forward velocity U in deep water, in

the presence of a plane progressive ambient wave, with the wave vector ki and
frequency ωi = (gki)

1/2, where ki ≡ |ki | is the amplitude of the wave vector and g is
the gravitational acceleration. Our interest is in the nonlinear resonant interactions
between the steady (relative to the ship) wave components in the Kelvin wake and
the (unsteady) ambient wave.

We define a space-fixed right-handed Cartesian coordinate system (O-XYZ) with
the origin located on the mean free surface, the X-axis pointing in the direction of ship
forward speed and Z-axis positive upward, as shown in figure 1. For convenience,
we also define a ship-fixed coordinate system (O ′-X′Y ′Z′), which is related to the
O − XYZ system by X′ =X − Ut , Y ′ = Y and Z′ =Z, where t is time and U ≡ |U | is
the ship forward speed.

The Kelvin waves contain diverging and transverse waves whose far-field
characteristics are well known (e.g. Newman 1977). For later convenience, the basic
kinematics of waves in the Kelvin wake are briefly described here. Referring to
the (space-fixed) O − XYZ system, both diverging and transverse waves are free
propagating waves. The wave vectors, kd and ks , and the corresponding frequencies,
ωd and ωs , satisfy the dispersion relation: ωd = (gkd)

1/2 and ωs = (gks)
1/2, where

kd ≡ |kd | and ks ≡ |ks |. In the (ship-fixed) O ′ − X′Y ′Z′ system, they become steady.
The wave vectors kd and ks are constant along any ray given by tan α = −Y ′/X′ for
X′ < 0, where α is measured clockwise from the track of the ship. Along the ray, we
denote the propagating directions of kd and ks by θd and θs respectively, measured
anti-clockwise from the direction of ship motion. These satisfy the equation (Newman
1977):

tan α =
sin θ cos θ

1 + sin2 θ
(2.1)
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Figure 1. Cartesian coordinate systems used in the analysis and a sketch of a resonant quartet
wave system formed by the Kelvin diverging (kd ) and transverse (ks) waves of an advancing
ship, the plane ambient incident wave (ki), and the resonance-generated wave (kr ).

with 35.16◦ � |θd(α)| � 90◦ and |θs(α)| � 35.16◦. In terms of θd and θs , the magnitudes
of kd and ks are given by

kd(α) = k0 sec2 θd and ks(α) = k0 sec2 θs (2.2)

where k0 ≡ g/U 2. Equation (2.1) possesses real roots for θ for |α| � 19.5◦ only, so that
the diverging and transverse waves appear only in the Kelvin wake within a wedge
given by |α| � 19.5◦.

It is well known that the leading-order resonance for nonlinear interactions of
surface gravity waves in deep water can occur at third order (in the wave steepness)
involving four wave components. The conditions for quartet resonant interactions
of the waves in the Kelvin ship wake and the ambient plane incident wave can be
deduced from the general resonance condition for nonlinear wave–wave interactions
(e.g. Phillips 1960). Specifically, interactions among four different wave components
become resonant at third order (in the wave steepness) if the wavenumbers kj

and the corresponding frequencies satisfying the (deep-water) dispersion relationship,
ωj = (gkj )

1/2, j = 1, 2, 3, 4, satisfy

k1 + k2 = k3 + k4, ω1 + ω2 = ω3 + ω4. (2.3)

For convenience, we hereafter refer to the third-order resonance quartet given by the
condition (2.3) as [k1, k2, k3, k4]. The conditions for third-order quartet resonance for
the present problem involving a Kelvin wake and a plane incident wave are obtained
by replacing the wave components (kj , ωj ) in (2.3) by the ambient incident wave
(ki , ωi), the diverging wave (kd , ωd) and the transverse wave (ks , ωs) wave, and the
resonance-generated wave (kr , ωr =(g|kr |)1/2).

Since kd and ks are functions of α, a third-order resonance quartet can be formed
only along a particular ray in the wake of the ship, which travels together with the
ship. In order for the generated wave (kr ) to grow, the kr wave must propagate in
such a way that it remains on the resonance ray. This leads to an additional condition
to be satisfied by the kr wave:

(Cgr − U) · n = 0 , on α = − tan−1(Y ′/X′), (2.4)
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where Cgr ≡ ωr kr/(2k2
r ) is the group velocity of the kr wave and n is the unit normal

vector of the resonance ray (α = − tan−1(Y ′/X′)). If conditions (2.3) and (2.4) are
satisfied, third-order resonant interaction among the ki , kd and ks waves will result
in a persistent resonant wave with wave vector kr along the same ray. A sketch of
such a quartet resonant wave system is shown in figure 1.

In general, the resonance (2.3) can be satisfied by the following three combinations
of quartet wave vectors: (I) k1 = k2 = k3 = k4; (II) k1 = k2 �= k3 �= k4; and (III)
k1 �= k2 �= k3 �= k4. Case (I) is the simplest and occurs at third order in the Stokes
expansion of a single plane progressive wavetrain. (II) corresponds to the case where
two wave components in the quartet are identical. For plane progressive waves,
Phillips (1960) studied this case and reduced the resonance condition (2.3) to the
well-known ‘figure of 8’ diagram. Case (III) is the most general.

In the present investigation, both cases (II) and (III) must be considered. For case
(II), there are four possible wave vector combinations which can form third-order
resonant quartets: [ki , ki , ks , kr ]; [ki , ki , kd , kr ]; [ks , ks , ki , kr ]; and [kd , kd , ki , kr ].
Note that, according to Newman (1971), resonance quartet cannot be formed by [ks ,
ks , kd , kr ] or [kd , kd , ks , kr ]. In addition, in this study we do not include the case with
the generated wave kr counted twice, for which the growth of the generated wave is
much weaker than that in other wave vector combinations. For case (III), there are
three possible resonant combinations: [ki , ks , kd , kr ]; [ki , kd , ks , kr ]; and [ki , kr , ks ,
kd].

As an illustration of the above, we consider the resonance quartet, [ki , ki , ks , kr ],
involving the incident ambient wave, ship transverse wave, and resonance-generated
wave. The other cases involving ship diverging waves can be considered similarly, but
are not shown here, for brevity. Let k1 = k2 = ki , k3 = ks and k4 = kr and then (2.3)
can be rewritten in the form (Phillips 1960):

kr = Λ(2ki − ks),
cos(θi − θs) = 2κ1/2 + 8κ−1/2 − 3κ−1 − 6,

}
(2.5)

where κ = ks/ki , and θi denotes the direction of ki . In the above, Λ = + 1(−1) for
κ < (>)4, which ensures ωr > 0. Upon using the first equation of (2.5), the condition
(2.4) takes the form

Λκ1/2(2 sin θi − κ sin θs)

Λκ1/2(2 cos θi − κ cos θs) − 2f 3/2/ cos θs

= −sin θs cos θs

1 + sin2 θs

, (2.6)

where f is a function of κ , θi and θs:

f (κ, θi, θs) = [4 − 4κ cos(θi − θs) + κ2]1/2. (2.7)

The first equation of (2.5) gives kr in terms of ki and ks , while (2.6) and the second
equation of (2.5) provide the relation between ki and ks . For a given θs (or α), we
solve for κ (i.e. |ki |) and θi from (2.6) and the second equation of (2.5). From (2.6), it
is clear that κ and θi are respectively even and odd functions of α.

For a given α, two independent sets of solutions for ki and θi can be obtained: one
has relatively small kr < ki; and the other a relatively large kr > ki . In figures 2 and
3, the two sets of solutions of ki and θi and the resulting kr and θr are shown as a
function of α for −19.5◦ � α � 19.5◦. The conditions for each of the other resonant
quartets (including the ones involving divergent waves) can be analysed in the same
manner. For brevity, these results are not presented here (for details, see Zhu 2000).
We note that numerical analyses of these conditions indicate that it is unlikely for
multiple quartet resonances to obtain simultaneously for a given ambient wave.
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Figure 2. First solution of the resonance condition for the quartet interaction of the
transverse ship wave (ks) and the plane ambient wave (ki), with the resonance-generated
wave kr = 2ki − ks , along the ray α in the Kelvin wake of an advancing ship. (a) The
amplitude ki (- - -) and direction θi (——) of wave vector of the ambient incident wave.
(b) The amplitude kr (- - -) and direction θr (——) of wave vector of the resonance-generated
wave as a function of α.
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Figure 3. Second solution of the resonance condition for the quartet interaction of the
transverse ship wave (ks) and the plane ambient wave (ki), with the resonance-generated wave
kr = 2ki − ks , along the ray α in the Kelvin wake of an advancing ship. (a) The amplitude ki

(- - -) and direction θi (——) of wave vector of the ambient incident wave. (b) The amplitude
kr (- - -) and direction θr (——) of wave vector of the resonance-generated wave as a function
of α.

3. Theoretical analysis
To understand the resonance mechanism and the features of the generated wave, in

this section we perform theoretical analysis to derive the nonlinear evolution equations
for the interacting wave components. In the analysis, two approaches are taken. The
first one is a multiple-scale approach that accounts for the resonance effect on the
resonance ray but neglects the detuning effect associated with the variation of wave
vector of Kelvin waves across the ray. The resulting evolution equation, in the form of
a cubic Schrödinger equation (e.g. Benny 1962; Mei, Stiassnie & Yue 2005), obtains
the resonance on the resonance ray but strictly not in the neighbourhood of the ray.
To capture the full nonlinear interactions in the Kelvin wake in the neighbourhood
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of the resonance ray, we develop a second approach based on the Zakharov equation
(e.g. Zakharov 1968; Crawford et al. 1981).

3.1. A cubic Schrödinger equation model based on locally constant wave vectors

In a preliminary analysis, the wave evolution on the resonance ray itself can be
obtained using a multiple-scale analysis using the assumption that the ship waves
behave locally like modulated amplitude plane waves with constant wave vector.
Clearly, in this case, detuning effects associated with the spatial variation of wave
vectors of Kelvin waves across the resonance ray are neglected. With this assumption,
the analysis is similar to that for the quartet resonant interactions of plane waves
(e.g. Benny 1962; Mei et al. 2005).

Using the resonance case with kr =2ki − ks as an example, we start by considering
the evolution of the generated resonant wave kr . For convenience, we define another
space-fixed Cartesian coordinate system o − xyz, with the x-axis pointing in the
direction of kr and the z-axis upwards (see figure 1 and the Appendix for detail). In
the context of potential flow, the wave motion is described by a velocity potential
Φ(x, y, z, t). At any time, Φ(x, y, z, t) satisfies the Laplace equation within the fluid:

Φxx + Φyy + Φzz = 0. (3.1)

and the nonlinear kinematic and dynamic boundary conditions on the instantaneous
free surface, z = ζ (x, t), where x ≡ (x, y):

Φtt + gΦz + 2∇Φ · ∇Φt + 1
2
∇Φ · ∇(|∇Φ|2) = 0,

Φt + 1
2
|∇Φ|2 + gζ = 0.

}
(3.2)

In deep water, wave motion vanishes, i.e. ∇Φ → 0 as z → −∞. This boundary-value
problem for Φ governs the dynamics of the nonlinear wave–wave interactions. We
now apply the multiple-scale procedure (e.g. Mei et al. 2005) to the boundary-value
problem. As in Benny & Roskes (1969), we here consider the general case for which,
in addition to slow time, slow spatial effects in both horizontal directions (x and y)
are all accounted for.

On introducing slow space and time variables,

x1 = εx, x2 = ε2x, . . . , y1 = εy, y2 = ε2y, . . . , and t1 = εt, t2 = ε2t, . . . , (3.3)

where ε 	 1 is a small parameter measuring the wave steepness, we expand the
potential Φ and the surface elevation ζ in perturbation series:

Φ =
∑
n=1

εnφ(n)(x, x1, . . . ; y, y1, . . . ; z; t, t1, . . .), (3.4)

ζ =
∑
n=1

εnζ (n)(x, x1, . . . ; y, y1, . . . ; t, t1, . . .). (3.5)

Substituting these expansions into (3.1) and (3.2), expanding the free-surface boundary

conditions in Taylor series about the mean free surface z = 0, and collecting terms
at each order, we obtain a sequence of linear boundary-value problems for the
perturbation potentials φ(n) and free-surface elevations ζ (n), for n= 1, 2, . . .:

∇2φ(n) = F (n), z � 0, (3.6)(
g

∂

∂z
+

∂2

∂t2

)
φ(n) = G(n), z = 0, (3.7)
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−gζ (n) = H (n), z = 0, (3.8)

∇φ(n) → 0 asz → −∞. (3.9)

In the above, the forcing terms F (n), G(n) and H (n) are explicitly given in terms of
the perturbation potentials and wave elevations at lower orders. Their expressions
(for n � 3) are given in the Appendix. These linear boundary-value problems can be
successively solved up to the desired order starting from n=1.

The first-order problem is the classical linear problem. For the resonance case with
kr = 2ki − ks , we write ζ (1) and φ(1) as

ζ (1) =
1

2

[
Ai(x, t)ei(ki · x−ωi t) + As(x, t)ei(ks · x−ωs t) + Ar (x, t)ei(kr · x−ωr t)

]
+ c.c., (3.10)

φ(1) = −g

2

[
Ai(x, t)

ωi

ei(ki · x−ωi t) +
As(x, t)

ωs

ei(ks · x−ωs t) +
Ar (x, t)

ωr

ei(kr · x−ωr t)

]
+ c.c., (3.11)

where Ai , As and Ar are the complex amplitudes of the ambient wave, the transverse
ship wave, and the resonance-generated wave, respectively. In the above, i ≡ (−1)1/2,
and c.c. represents the complex conjugate of the previous terms. The wave amplitudes
(Ai , As and Ar ) depend on slow spatial and temporal variables: x1, y1, t1, . . . .

The equations governing the evolution of Ai , As , and Ar are obtained from the
higher-order problems. For quartet resonance, the (leading-order) nonlinear evolution
equations for Ai , As , and Ar are obtained based on the second-order solution φ(2)

and ζ (2) and the solvability condition for φ(3). The derivation is quite involved, but
straightforward, and is omitted here (the key steps are outlined in the Appendix). The
evolution equation for the amplitude of the resonance-generated wave can be finally
expressed in the form of a cubic nonlinear Schrödinger equation (NLS) involving
cubic nonlinear interactions among the incident, transverse and the generated resonant
waves:[

i
∂

∂t
+ Cgr

(
i
∂

∂x
− 1

4kr

∂2

∂x2
+

1

2kr

∂2

∂y2

)]
Ar

= CrsiiA
2
i A

∗
s + CrrrrA

∗
rA

2
r + CririA

∗
i AiAr + CrsrsA

∗
sAsAr, (3.12)

where the coefficients Crsii , Crrrr , Criri and Crsrs are ultimately functions of ki , ks

and kr , and are constants in the entire resonance region considered. The evolution
equations for Ai and As are obtained similarly, based on the analysis in the Appendix,
but are not shown here, for brevity. The three coupled evolution equations are solved
together to determine the variation of the amplitudes of interacting waves.

Note that in the above analysis we assume homogeneous conditions, i.e. plane
progressive wave components satisfying resonance condition in the absence of other
waves. The NLS (3.12) is thus valid only on the resonance ray as the analysis
here does not take into account the fact that the wave vector of ship waves varies
continuously across the resonance ray. In particular, the effect of detuning away
from the resonance ray (e.g. Li & Tulin 1999) is neglected. The extension to include
the true inhomogeneous condition in the NLS context is not straightforward. For a
complete treatment including these effects, in the following section we perform an
analysis based on the Zakharov equation to account for the nonlinear interactions in
a continuous spectrum including both resonance and near-resonance effects (see e.g.
Zakharov 1968; Crawford et al. 1981).
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3.2. A complete model based on the Zakharov equation

To obtain the nonlinear resonant interactions involving varying wave components in
the Kelvin wake, a general model can be derived starting from the Zakharov equation
(e.g. Mei et al. 2005). According to Krasitskii (1994), the integral equation governing
the nonlinear evolution of a wave component (k1), in a wave spectrum including
third-order quartet resonant wave–wave interactions, can be written as

i
∂B(k1, t)

∂t
=

∫ ∫ ∫ ∞

−∞
T (k1, k2, k3, k4)B

∗(k2, t)B(k3, t)B(k4, t)

× δ(k1 + k2 − k3 − k4) exp [i(ω1 + ω2 − ω3 − ω4)t] dk2 dk3 dk4, (3.13)

where ∗ denotes complex conjugate and δ is the delta function. The dependent variable
B(k, t) is related to the (Fourier) modal amplitudes of the wave elevation ζ̂ (k, t) and
the free-surface potential φ̂s(k, t):

B(k, t) =

[(
g

2ω(k)

)1/2

ζ̂ (k, t) + i

(
ω(k)

2g

)1/2

φ̂s(k, t)

]
eiω(k)t . (3.14)

The kernel T accounts for the quartet interaction effect of waves k1, k2, k3, and k4

takes the form

T (k1, k2, k3, k4) = (Z1,2,3,4 + Z2,1,3,4 + Z3,4,1,2 + Z4,3,1,2)/4 + W1,2,3,4, (3.15)

where

Z1,2,3,4 = −
2V

(−)
4,4−2,2V

(−)
1,3,1−3

ω2−4 − ω4 + ω2

−
2V

(−)
3,1,3−1V

(−)
2,2−4,4

ω2−4 − ω2 + ω4

−
2V

(−)
3,3−2,2V

(−)
1,4,1−4

ω2−3 − ω3 + ω2

−
2V

(−)
4,1,4−1V

(−)
2,2−3,3

ω2−3 − ω2 + ω3

−
2V

(−)
1+2,1,2V

(−)
3+4,3,4

ω3+4 − ω3 − ω4

−
2V

(+)
−3−4,3,4V

(+)
1,2,−1−2

ω3+4 + ω3 + ω4

, (3.16)

V
(±)
1,2,3 =

1

8π
√

2

{
(k1 · k2 ± k1k2)

(
ω1ω2

ω3

k3

k1k2

)1/2

+ (k1 · k3 ± k1k3)

(
ω1ω3

ω2

k2

k1k3

)1/2

+ (k2 · k3 + k2k3)

(
ω2ω3

ω1

k1

k2k3

)1/2
}

, (3.17)

W1,2,3,4 = W̄−1,−2,3,4 + W̄3,4,−1,−2 − W̄3,−2,−1,4 − W̄−1,3,−2,4

− W̄−1,4,3,−2 − W̄4,−2,3,−1, (3.18)

W̄1,2,3,4 =
1

64π2

[
ω1ω2

ω3ω4

k1k2k3k4

]1/2

[2(k1 + k2) − k2+4 − k2+3 − k1+4 − k1+3], (3.19)

and

ki±j = |ki ± kj |, ωi±j = ω(ki±j ).

Applying (3.13) to the present problem involving the Kelvin ship wake and ambient
wave components, we obtain, for the resonance case [ki , ki , ks , kr ], the following
evolution equation for the resonance-generated wave:

i
∂Br (k1, t)

∂t
=

∫ ∫ ∫ ∞

−∞
T (k1, k2, k3, k4)B

∗
s (k2, t)Bi(k3, t)Bi(k4, t)

× δ(k1 + k2 − k3 − k4) exp[i(ω1 + ω2 − ω3 − ω4)t] dk2 dk3 dk4
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+

∫ ∫ ∫ ∞

−∞
T (k1, k2, k3, k4)B

∗
r (k2, t)Br (k3, t)Br (k4, t)

× δ(k1 + k2 − k3 − k4) exp[i(ω1 + ω2 − ω3 − ω4)t] dk2 dk3 dk4

+ 2

∫ ∫ ∫ ∞

−∞
T (k1, k2, k3, k4)B

∗
i (k2, t)Bi(k3, t)Br (k4, t)

× δ(k1 + k2 − k3 − k4) exp[i(ω1 + ω2 − ω3 − ω4)t] dk2 dk3 dk4

+ 2

∫ ∫ ∫ ∞

−∞
T (k1, k2, k3, k4)B

∗
s (k2, t)Bs(k3, t)Br (k4, t)

× δ(k1 + k2 − k3 − k4) exp[i(ω1 + ω2 − ω3 − ω4)t] dk2 dk3 dk4, (3.20)

where Br , Bs , and Bi refer respectively to the resonance-generated, ship, and ambient
waves. The first term on the right-hand side of (3.20) accounts for the effect of quartet
resonance with kr = 2ki − ks . The other three terms represent the effects due to self-
interaction with kr = 2kr − kr , and trivial quartet resonances with kr = kr + ki − ki

and kr = kr + ks − ks . Similar evolution equations for Bs and Bi can be obtained, but
are not shown here for brevity.

Equation (3.20) gives a description of the nonlinear interactions among waves in
a continuous spectrum (including ship and ambient waves). In the present context,
the ship wave system is given as a superposition of free plane waves represented
by Bs(k, t). The classical far-field Kelvin wake with spatially varying amplitudes can
be obtained from this system by stationary phase analysis (e.g. Newman 1977). It is
important to remark that the Zakharov equation is applied directly to the original
general wave system and not to the varying amplitude Kelvin waves.

3.3. Simplification of the evolution equations

Unlike the cubic Schrödinger equation, (3.20) is in an integral form and difficult to
resolve numerically. If our interest is in the neighbourhood of the resonance ray,
(3.20) can be simplified using a narrow-band assumption. The final result can be
expressed as a partial differential equation, which resembles in form the nonlinear
Schrödinger equation (3.12). Unlike (3.12), this equation now includes the detuning
effect not accounted for in the NLS.

In a small region around a resonance ray (α =α0), we assume that the ship
wave, ambient wave, and resonance-generated wave are narrow-banded around their
corresponding central wave vectors ks0

, ki and kr , and write

k1 = kr + p1, k2 = ks0
+ p2, k3 = ki + p3, k4 = ki + p4, (3.21)

where | p1|/|kr |, | p2|/|ks0
|, | p3|/|ki |, | p4|/|ki | = o(1). This approximation allows (3.20)

to be reduced to a simplified differential equation form. For clarity, we show the
detailed steps of the simplification for the term involving B∗

s BiBi only, and provide
the final results for the other three terms involving B∗

r BrBr , B∗
i BiBr , and B∗

s BsBr . On
substituting (3.21) into (3.20), we have

i
∂B̃r ( p1, t)

∂t
− [ω(kr + p1) − ω(kr )]B̃r ( p1, t)

=

∫ ∫ ∫ ∞

−∞
T (kr + p1, ks0

+ p2, ki + p3, ki + p4)

× B̃∗
s ( p2, t)B̃i( p3, t)B̃i( p4, t)δ( p1 + p2 − p3 − p4) d p2 d p3 d p4, (3.22)
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in which

B̃r ( p1, t) ≡ Br (kr + p1, t) exp{−i[ω(kr + p1) − ω(kr )]t},
B̃s( p2, t) ≡ Bs(ks0

+ p2, t) exp{−i[ω(ks0
+ p2) − ω(ks0

)]t},
B̃i( p3, t) ≡ Bi(ki + p3, t) exp{−i[ω(ki + p3) − ω(ki)]t},
B̃i( p4, t) ≡ Bi(ki + p4, t) exp{−i[ω(ki + p4) − ω(ki)]t}.

Upon expanding ω(kr + p1) about k = kr , we obtain

ω(kr + p1) − ω(kr ) = Cgr

(
p1x − p2

1x

4kr

+
p2

1y

2kr

)
+ O(| p1|3), (3.23)

where p1 ≡ (p1x, p1y), with p1x being the component of p1 in the direction of kr .
Applying the inverse Fourier transform to (3.22) and using (3.23), we obtain from

the left-hand side of (3.22)

L = i
∂ar

∂t
+ Cgr

(
i
∂ar

∂x
− 1

4kr

∂2ar

∂x2
+

1

2kr

∂2ar

∂y2

)
+ O(| p1|2), (3.24)

where ar is the inverse Fourier transform of B̃r :

ar (x, t) =
1

2π

∫ ∞

−∞
B̃r ( p1, t)e

i p1 · x d p1 . (3.25)

Here x ≡ (x, y), with the x-axis pointing in the direction of kr . It is apparent from
(3.14) that ar is related to the amplitudes of wave elevation and free-surface potential
of the resonance-generated wave. From the right-hand side of (3.22), we obtain

R ≡ 1

2π

∫ ∞

−∞
d p1e

i p1 · x
∫ ∫ ∫ ∞

−∞
T (kr + p1, ks0

+ p2, ki + p3, ki + p4)

× B̃∗
s ( p2, t)B̃i( p3, t)B̃i( p4, t)δ( p1 + p2 − p3 − p4) d p2 d p3 d p4

=
1

2π

∫ ∫ ∫ ∞

−∞
T (kr − p2 + p3 + p4, ks0

+ p2, ki + p3, ki + p4)

× B̃∗
s ( p2, t)B̃i( p3, t)B̃i( p4, t)e

i(− p2+ p3+ p4) · x d p2 d p3 d p4 . (3.26)

To leading order, the wave vector of the ambient wave can be considered to be
constant in the neighbourhood of the resonance ray (α =α0). Thus, B̃i should behave
like a δ function. As a result, upon neglecting the high-order effects for B̃i , we obtain

R = 2πa2
i

∫ ∞

−∞
T (kr − p2, ks0

+ p2, ki , ki)B̃
∗
s ( p2, t)e

−i p2 · x d p2, (3.27)

where ai is the inverse Fourier transform of B̃i , which is related to the wave elevation
and free-surface potential of the ambient incident wave.

The integral in (3.27) represents the contribution from all components of the ship
wave system. As in the classical Kelvin solution (e.g. Newman 1977), this can be
approximated using the method of stationary phase. In the far field, for the resonance
considered here, this integral is dominated by contribution from the transverse wave
component. We thus obtain

R = 4π2T (kr − ks(X ′) + ks0, ks(X ′), ki , ki)a
2
i a

∗
s (X ′), (3.28)

where X ′ ≡ (X′, Y ′) in the ship-fixed coordinate system O ′ − X′Y ′Z′ (see figure 1), and
as is related to the wave elevation and free-surface potential of the transverse ship
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wave component with wave vector ks(X ′). (Note that in this context, as and B̃s are
not direct Fourier transforms of each other.)

The other three terms on the right-hand side of (3.20) can be simplified in a similar
manner. Upon adding these contributions to R, we obtain the simplified version of
the evolution equation (3.20):[

i
∂

∂t
+ Cgr

(
i
∂

∂x
− 1

4kr

∂2

∂x2
+

1

2kr

∂2

∂y2

)]
ar = 4π2(Trsiia

2
i a

∗
s + Trrrra

∗
r a

2
r

+ 2Triria
∗
i aiar + 2Trsrsa

∗
s asar ), (3.29)

where Trsii = T (kr − ks + ks0, ks, ki , ki), Trrrr = T (kr , kr , kr , kr ), Triri = T (kr , ki , kr , ki)
and Trsrs = T (kr , ks, kr , ks). We note that (3.29) has a similar form to the cubic
Schrödinger equation (3.12), obtained using multiple-scale analysis, assuming a
constant wave vector across the resonance ray. Unlike (3.12), the coefficients Trsii , . . . ,

in (3.29) now vary across the resonance ray and depend on the wave vector of
the waves in the ship wake. Equation (3.29) can be considered as an extension of
(3.12), with the inclusion of the detuning effect of near-resonance interactions across
the resonance ray. At exact resonance, (3.29) recovers (3.12). We also remark that
this detuning effect may be considered in § 3.1 by introducing an additional scale
associated with the variation of the wave vectors around the resonance ray. The
analysis here based on the Zakharov equation turns out to be more straightforward.

Following a similar procedure, the simplified evolution equations for the ambient
incident and ship waves in the neighbourhood of the resonance ray (α =α0) can be
obtained:[

i
∂

∂t
+ Cgi

(
i
∂

∂x
− 1

4ki

∂2

∂x2
+

1

2ki

∂2

∂y2

)]
ai = 4π2(2Tiirsa

∗
i aras + Tiiiia

∗
i a

2
i

+ 2Tisisa
∗
s asai + 2Tirira

∗
r arai) (3.30)

and[
i
∂

∂t
+ Cgs

(
i
∂

∂x
− 1

4ks

∂2

∂x2
+

1

2ks

∂2

∂y2

)]
as = 4π2(2Tsriia

2
i a

∗
r + Tssssa

∗
s a

2
s

+ 2Tsisia
∗
i aias + 2Tsrsra

∗
r aras), (3.31)

where Cgi and Cgs are the group velocities of the ambient incident wave and the
transverse ship wave, respectively, at the resonant ray (α = α0). The coefficients
Tsrii , . . . , are defined in the same way as those in (3.29). The Cartesian coordinates
(x, y) in (3.30) and (3.31) are defined with the x-coordinate pointing in the direction
of ki and ks , respectively.

3.4. Solution of the evolution equations

Here we solve (3.29)–(3.31) for the evolution of ar , ai and as . For convenience, we
define a right-handed ship-fixed Cartesian coordinate system (O ′ − ξηZ′), with the
ξ -axis coincident with the resonance ray pointing away from the ship, and Z′ positive
upwards.

Referring to this coordinate system, and dropping the time-dependent term in (3.29)
for the steady-state solution, we obtain, for the resonant wave,(

σ1

∂

∂ξ
+ σ2

∂

∂η

)
ar + i

ωr

8k2
r

(
σ3

∂2

∂ξ 2
+ σ4

∂2

∂ξ∂η
+ σ5

∂2

∂η2

)
ar

+ i4π2
(
Trsiia

2
i a

∗
r + Trrrr |ar |2ar + 2Triri |ai |2ar + 2Trsrs |as |2ar

)
= 0. (3.32)
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In the above, the coefficients σj , j = 1, . . . , 5, result from the transformation of the
coordinate system from O − XYZ to O ′ − ξηZ′, and are given by

σ1 = U cos α − Cgr
cos(α + θr ),

σ2 = U sinα − Cgr
sin(α + θr ),

σ3 = cos2(α + θr ) − 2 sin2(α + θr ),
σ4 = 3 sin 2(α + θr ),

σ5 = sin2(α + θr ) − 2 cos2(α + θr ).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.33)

Because of condition (2.4), the coefficient σ2 = 0.
We now apply a simple finite-difference numerical scheme using a prediction–

correction algorithm (Yue & Mei 1980) to solve (3.32), coupled with the evolution
equations for the ship wave (as) and the ambient wave (ai) (cf. (3.30) and (3.31)).
The ambient incident wave steepness ki |Ai | ≡ ε is used as a measure of nonlinearity
in the resonant interaction. In the numerical calculations, the interaction coefficient
T (k1, k2, k3, k4) is computed using (3.15) if |ω1 +ω2 −ω3 −ω4|/ω < ε2, and is otherwise
set to be zero since the contribution of wave components further away from the
resonance are negligibly small. Since steady ship waves even with high steepness are
dominated by the linear Kelvin wake (Akylas 1987), we employ the Kelvin solution
of the undisturbed ship wake for the wave associated with ks:

as0(ξ, η) = a0

(
ξ0

|X ′|

)1/2

ei[ks (ξ,η)−ks (ξ,0)] · X ′
, ξ > ξ0, (3.34)

where X ′ ≡ (X′, Y ′) represents the position of the point (ξ, η) in the ship-fixed
coordinate system O ′ − X′Y ′Z′, and a0 ≡ as0(ξ0, η =0). The value of a0 depends on
ship geometry and forward speed U . To ensure that the evolution equation (3.31)
allows the particular Kelvin solution (3.34), we add a forcing term P to the right-hand
side of (3.31) in the computation:

P (X ′, t) ≡
[
i
∂

∂t
+ Cgs

(
i
∂

∂x
− 1

4ks

∂2

∂x2
+

1

2ks

∂2

∂y2

)]
as0 − 4π2Tssss |as0|2as0. (3.35)

We obtain numerical results in a narrow strip centred around the resonance
ray ξ > ξ0 and −η0 < η < η0, and assume that the resonance interaction starts at
ξ = ξ0 > 0. On the transverse upstream boundary ξ = ξ0, we set ar =0, as = as0(ξ0, η)
and ai = ai0, where ai0 is given by the undisturbed ambient incident wave. On the
longitudinal boundaries, η = ±η0, we assume the conditions ar = 0, ∂as/∂η = ∂as0/∂η,
and ∂ai/∂η = 0. Since |a| is related to the wave amplitude |A| by |A| =(k/2ω)1/2|a|,
for clarity we present our results in terms of |A|.

As a numerical illustration, we consider a case with an ambient wave of
ki ≡ |ki | =3.48k0 and θi = 120◦. From the resonance condition (2.5), we obtain that
the third-order quartet resonance (with kr = 2ki − ks) occurs on the ray α = 7.5◦. The
resonance-generated wave has kr ≡ |kr | =7.4k0 and θr =127◦ (cf. figure 2).

Figures 4(a) and 4(c) show the amplitude of the resonance-generated wave, |Ar |,
for this case in the neighbourhood of the resonance ray α = 7.5◦, viewed from
centreline and far field, respectively. In the calculation, we use ambient wave steepness
ε = 0.10, and ks0A0 = 0.18. The numerical parameters used are k0η0 = 400, k0ξ0 = 5,
and k0�ξ = k0�η =0.1, where �ξ and �η are the discretization sizes in ξ and η,
respectively. From figures 4(a) and 4(c), it is seen that |Ar | grows monotonically with
ξ in the very initial stage of the resonance (for k0(ξ − ξ0)/2π = (ξ − ξ0)/λ< ∼ 25), and
then grows slowly in an oscillatory manner with a characteristic wavelength of ∼ 60λ.
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Figure 4. Amplitude envelope of the resonance-generated wave (kr = 7.4k0 and θr = 127◦) in
the neighbourhood of the resonance ray (α = 7.5◦) in the Kelvin wake of a ship advancing
in a plane ambient wave (ε = 0.10, ki = 3.48k0, θi = 120◦). The transverse ship wave steepness
is ks0A0 = 0.18. The plots are made viewing from the centreline (a, b) and far field (c, d).
The results were obtained using (a, c) the Zakharov equation model; and (b, d) the nonlinear
Schrödinger equation.

In both near and far fields, |Ar | decreases rapidly in the transverse direction as the
distance from the resonance ray increases. For comparison, we also plot in figures 4(b)
and 4(d) the corresponding result obtained using the NLS model (3.12). Comparing
the two, it is seen that the two solutions agree relatively well on the resonance ray
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Figure 5. The initial growth of the resonance-generated wave along the resonance ray (η = 0)
using the Zakharov equation model with (ks0A0, ε) begin given by (0.09, 0.1), —�—; (0.18, 0.1),
—�—; and (0.18, 0.2), —•—. Also plotted are the results obtained by applying the nonlinear
Schrödinger equation, with (ks0A0, ε) given by (0.09, 0.1), - -�- -; (0.18, 0.1), - -�- -; and (0.18,
0.2), - -•- -. (ki = 3.48k0, θi = 120◦, and α = 7.5◦.)

η =0, but deviate qualitatively as |η| increases. This feature of the comparison is as
expected since the NLS model does not include the detuning effect.

From the evolution equation (3.29), it is clear that at the initial stage of resonance
where |ar |/|as | 	 1 and |ar |/|ai | 	 1, the growth of |ar | is determined primarily by
the cubic interaction term Trsiia

∗
s a

2
i . At this stage, it is reasonable to assume that

ai ∼ ai0 and as ∼ as0 along the resonance ray (η = 0). Thus, we obtain from (3.29)
that |ar | ∼ ξ 1/2a0a

2
i0 at the initial stage of the resonance. This is confirmed in figure 5,

where the initial growth of |Ar | along the resonant ray is plotted for different ship and
ambient wave steepnesses. Also plotted for comparison in the figure are the initial
evolutions obtained from NLS. These results on the resonant ray are indistinguishable
for the smaller steepness cases; and for the very large steepness case, the deviation is
appreciable (only) with increasing resonance distance. The good performance of the
NLS in this context can be expected, since for relatively small ambient and ship wave
steepnesses and limited resonance growth (distance), the detuning along the resonance
ray is small.

To illustrate the detuning effect further, we show in figure 6(a) a quantitative
comparison of the two solutions for |Ar | on the resonance ray (η = 0) over a long
evolution distance for the same case shown in figure 4. Compared with the solution
by the Zakharov equation model, the NLS solution overestimates |Ar | in the far
field (for (ξ − ξ0) > 15λ), though the two solutions show a similar oscillatory feature.
A more stringent comparison of the NLS, even for small evolution distance, is to
compare the transverse variations of |Ar | across the resonance ray. Figure 6(b) shows
a typical result at distance (ξ − ξ0)/λ= 10. The resonant wave amplitude is narrowly
confined along the α0 (η = 0) ray, decreasing to zero monotonically and rapidly
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Figure 6. (a) Longitudinal variation of |Ar | on the resonance ray (η = 0), and (b) transverse
variation of |ar | across the resonance ray at (ξ − ξ0)/λ=10, obtained using the Zakharov
equation model (——) and the nonlinear Schrödinger equation (- - -). (ki = 3.48k0, θi = 120◦,
α = 7.5◦, kr = 7.4k0, θr = 127◦, ε = 0.10, and ks0A0 = 0.18.)

outboard (η < 0). On the inboard side (towards the ship’s track, η > 0), the envelope
is somewhat broader and the attenuation behaviour is more complex, displaying
local minima/maxima (see also the comparison in figure 4). Compared with the
NLS prediction, the maximum amplitude (η ≈ 0) is well predicted (at this relatively
small evolution distance), but the behaviours away from the resonance are not well
captured, especially on the inboard side. These results indicate that the detuning
effect is important and needs to be considered for accurately describing the features
of the generated wave with long evolution distance and in the region away from the
resonance ray.

Focusing on the results from the Zakharov evolution equations (3.29)–(3.31) from
now on, we plot in figure 7 the longitudinal variation of |Ar | along the resonance
ray over a long evolution distance ξ for different ambient and ship wave steepnesses.
The amplitude reaches an initial maximum over a distance that appears to depend
primarily on ambient wave steepness, increasing approximately quadratically with
decreasing ε. This feature of the solution is consistent with fact that the resonance in
this case is dominated by the interaction term Trsiia

∗
s a

2
i . Beyond this maximum, |Ar |

oscillates and decreases slowly with increasing ξ . The wavelength of this oscillation
increases with decreasing ε also almost quadratically, and appears to be insensitive
to changing steepness of the transverse ship wave.

Across the resonance ray, |Ar | displays a soliton-like variation (figure 6b). This
behaviour is a result of the detuning effect. For the present resonance interaction
problem, the detuning comes from two sources: one associated with imperfect
satisfaction of the resonance condition away from the resonance ray, and the other
with the amplitude modulation of the transverse ship wave across the resonance
ray. To characterize the transverse extent or width in the η direction of the
resonance-generated wave, we define the half-width of the envelope of |Ar | as
W (ξ ) = η+ − η−, where η± represent the positions where

∫ η+

0
|Ar |2 dη = 0.5

∫ ∞
0

|Ar |2 dη

and
∫ 0

η−
|Ar |2 dη = 0.5

∫ 0

−∞ |Ar |2 dη. Clearly, W is the width within which half of the

energy of the envelope is obtained. Figure 8 shows the result of W (ξ ) for different
ambient and ship wave steepnesses. The results are consistent with those on the
resonance ray η = 0 in figure 7. W has a strong dependence on the ambient wave
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Figure 7. Longitudinal variation of the resonance-generated wave |Ar | along the resonance
ray with (ks0A0, ε) given by (0.09, 0.1), ——; (0.18, 0.1), - - -; (0.18, 0.2), — · —. (ki = 3.48k0,
θi =120◦, and α = 7.5◦.)
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Figure 8. The half-width W (ξ ) of the envelope of the resonance-generated wave across the
resonance ray with (ks0A0, ε) given by (0.09, 0.1), ——; (0.18, 0.1), - - -; and (0.18, 0.2), — · —.
(ki = 3.48k0, θi = 120◦, and α = 7.5◦.)

steepness but is relatively insensitive to the ship wave steepness. Similarly, W also
exhibits an oscillatory modulation in ξ with characteristic wavelength comparable to
that for |Ar | along the resonance ray (cf. figure 7).
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4. Direct numerical simulations
We now turn to a direct numerical verification of our theoretical result. The

nonlinear wave–wave interactions involving a full Kelvin wake and an ambient
propagating wave is simulated using an efficient high-order spectral (HOS) method.
The total wave field in the wake obtained from the direct nonlinear simulation contains
different wave systems and components. These include the original (nonlinear) Kelvin
ship and ambient waves, the locked waves due to nonlinear interactions of ship and
ambient waves, and the resonance-generated wave with wave vector kr (in which we
are primarily interested). Based on basic relations (in frequency and wave vector) of
interacting wave components in the nonlinear wave system, the information of the
resonance-generated wave is identified from the total wave field and is then compared
with the theoretical prediction.

HOS is based on a Zakharov equation mode-coupling framework, but is generalized
to include up to an arbitrary order M in wave steepness and a large number N of
wave modes. The method obtains exponential convergence with N (and M) and
computational effort only linearly proportional to N (e.g. Dommermuth & Yue
1987). Originally developed for nonlinear gravity wave interactions (Dommermuth
& Yue 1987), HOS has since been extended to include the presence of moving
atmospheric forcing (Dommermuth & Yue 1988), finite depth and depth variations
(Liu & Yue 1998), and bodies (Liu, Dommermuth & Yue 1992; Zhu et al. 1999). The
high efficiency and accuracy of HOS is well suited to the direct wave simulation of
the present nonlinear resonant wave interaction problem.

For simplicity and without loss of generality, we consider the Kelvin waves
generated by a moving dipole. A dipole of strength � is located at a distance h

below the mean free surface and moves forward in the +X direction at speed U .
For comparison to the theoretical result (in § 3.4) in which only the transverse wave
is involved, we consider the relatively deep submergence case (k0h � 1) for which
the transverse wave is dominant over the diverging wave (Newman 1987). For the
ambient wave, we superimpose an exact (fully nonlinear) Stokes wave (Schwartz 1974)
with wave vector satisfying the resonance conditions of § 2. The (nonlinear) Kelvin
waves as well as waves resulting from nonlinear interactions are allowed to develop
in time via the HOS simulation.

In the numerical simulation, we choose a square (aligned with X′−Y ′) computational
domain with a side of length L = 100/k0. The computational domain moves with the
dipole at forward speed U such that the position of the dipole with respect to the
computational domain is fixed. In the computations, we use N = Nx × Ny =512 × 512
spectral wave modes and a time step �t =0.05U/g. To account for the third-order
quartet resonant interactions among the waves, the HOS simulations are performed
with order M up to 3. There are extensive validations of the HOS simulations.
For brevity these are omitted here (for specific results of the present problem, see
Dommermuth & Yue 1988; Zhu 2000).

We now show results for a specific resonant interaction case, for comparison with
theory (in § 3.4), with ambient wave ki = 3.48k0, θi = 120◦ and steepness ε = 0.10. For
these values of ki and θi , the theory predicts the generation of a resonant propagating
wave with kr = 7.40k0 and θr = 127◦ along the α =7.5◦ ray. For the moving dipole,
we use a dipole strength � = 0.1U 7/g3 and submergence k0h = 7.0. The simulation is
terminated when the steady state or limit-cycle of the nonlinear wave field in the wake
of the source is reached. From the nonlinear simulation, we examine the presence and
characteristics of the resonance-generated wave in the wake. To obtain these from
direct nonlinear simulations, we subtract the (nonlinear) steady Kelvin waves of the
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Figure 9. The frequency domain amplitude (ζ̃ (ξ, 0, ω)) at three locations: ξ = 2.3λ0 (——),
ξ = 4.6λ0 (- - -), and ξ = 9.2λ0 (— · —). The dipole is located at ξ = η = 0 with a strength of
� = 0.1U 7/g3 and a submergence of k0h =7.0.

dipole ζs(ξ, η) and the nonlinear ambient wave ζi(ξ, η, t) from the total nonlinear
wave field ζtotal (ξ, η, t) to obtain

ζ (ξ, η, t) = ζtotal (ξ, η, t) − ζs(ξ, η) − ζi(ξ, η, t), (4.1)

where ζ contains all the wave components associated with the nonlinear interactions
between the Kelvin wave and the ambient wave. Up to third order, the wave vectors
of these components are: ki ± ks , ki ± ki ± ks and ki ± ks ± ks .

On taking the Fourier transform of ζ (ξ, η, t) with respect to t , we obtain the
amplitude of the interaction-generated waves in the frequency domain:

ζ̃ (ξ, η, ω) =
2

nTre

∫ τ0+nTre

τ0

ζ (X′, Y ′, t)eiωret dt, (4.2)

where Tre = 2π/ωre ≡ 2π/(ωr − U · kr ) is the encounter period of the resonance-
generated wave, n is an integer, and τ0 a time interval selected so that limit-cycle
values for (4.2) are obtained.

Figure 9 plots the spectrum of the interaction-generated waves ζ̃ at three locations
along the resonance ray. The peak at ω = 0 corresponds to the third-order components
ki − ki ± ks which have zero encounter frequency in the moving coordinate system.
The second-order waves ki ± ks , as well as the third-order components ki ± ks ± ks ,
have encounter frequency ωie ≡ ωi − U · ki . The third-order waves 2ki ± ks and the
(small) fourth-order waves 2ki ± 2ks share the frequency 2ωie. One notes that in HOS
time-domain simulations with M=3, partial contributions to higher-order quantities
can exist in the solution (see Liu, Dommermuth & Yue 1992 for detailed discussions).

To separate the resonance-generated wave kr = 2ki − ks from the locked wave
components with the same encountering frequency, we do a further Fourier transform

of ζ̃ (ξ, 0, ωre) with respect to ξ . In spectral domain, ζ̃ (ξ, 0, ωre) becomes ˜̃ζ (k, 0, ωre),
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Figure 10. The Fourier transformation of the complex amplitude ζ̃ (ξ, 0, ωre) with respect to
ξ , where kr‖ is the component of kr parallel to the resonance ray. The dipole is located at

ξ = η = 0 with a strength of � = 0.1U 7/g3 and a submergence of k0h =7.0.

which is plotted in figure 10. We see that it contains four main components which
correspond to the resonance-generated wave 2ki − ks , and the locked waves 2ki + ks

and 2ki ± 2ks .
To extract the generated wave kr = 2ki − ks , we perform filtering in the spectral

domain to eliminate the locked wave components to obtain ˜̃ζr (k, 0, ωre). This is
the frequency-spectral domain representation of the generated wave kr along the
resonance ray. An inverse Fourier transformation is finally performed to obtain
the resonance-generated wave from the direct simulation, ζ̃r (ξ, 0, ωre), which has
amplitude |Ar | = |ζ̃r (ξ, 0, ωre)|. A similar procedure is applied to obtain ζ̃r (ξ, η, ωre)
for values of η �= 0.

Figure 11 plots the distribution of this amplitude |Ar | in the wake. The existence
of the resonance-generated wave along the predicted α = 7.5◦ resonance ray is clearly
seen. The amplitude as well as width of |Ar | increase with downwave distance, in
qualitative agreement with theory. Note that the filtering, first in frequency and then
in the amplitude of the wave vector, applied to obtain figure 11, is designed specifically
to extract |Ar | along the resonance ray, so that information of |Ar | in the figure away
from the ray is not useful.

To make quantitative comparison with theory, we obtain the amplitude of the
transverse wave at the starting point of the resonance by matching (3.34) to the
simulated steady Kelvin wave elevation along the resonance ray. This is shown in
figure 12, which shows a very good match with ks0A0 = 0.067 and k0ξ0 = 5. With
this, we obtain finally quantitative comparison between theory and direct HOS
simulation. Figure 13 shows this comparison for the initial growth of the resonant
wave along the η = 0 ray. The comparison is quite satisfactory and offers a further
independent validation of the theory (and the HOS simulation). We note here that
the rapid oscillation in the direct simulation result is associated with the large
kr � 7.4k0, while the slower modulations are associated with the wave vectors of the
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Figure 11. Amplitude of the generated progressive wave kr |Ar | in the wake of a submerged
dipole (strength � =0.1U 7/g3 and submergence k0h = 7.0). We plot the HOS simulation result
with ε = 0.10. The resonance ray (α = 7.5◦) is shown with a solid line.
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Figure 12. The HOS simulation result (M = 3) (——) of the Kelvin wave elevation ksζ of a
moving point source along the resonant ray (α = 7.5◦) and the matched envelope (- - -) of the
transverse wave based on equation (3.34) with ks0A0 = 0.067 and k0ξ0 = 5. The dipole strength
� = 0.1U 7/g3 and submergence k0h = 7.0.
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Figure 13. Comparison of the amplitude of the generated progressive wave on the resonance
ray (α = 7.5◦) in the wake of a submerged point dipole between the direct HOS simulation
(M = 3) and the theoretical analysis. We plot the HOS simulation result with ε = 0.10 and
ks0A0 = 0.067 (——) and the theoretical prediction (- - -).

interacting components. The amplitude of the generated wave increases with the
interaction distance ξ , while that of the ship wave decreases with ξ like ξ−1/2 (cf.
3.34). As a result, their ratio |Ar |/|As | increases (from zero) to 0.03 (with the ratio
of the steepness kr |Ar |/ks |As | =0.2) at (ξ − ξ0)/λ0 = 8. Direct comparison results have
also been obtained for additional resonance cases involving different ambient wave
parameters (see Zhu 2000). The results are similar to figure 13 and are not presented. In
particular, the direct simulation numerical results obtain the behaviour that the growth
rate increases quadratically with the ambient wave steepness, as predicted by theory.

In the above analysis and computations, the narrow-banded spread of the incident
wave itself is not explicitly considered. The treatment under the Zakharov approach in
the case of a narrow-banded incident wave (around ki) is very similar. The final effect
on the resonant wave is also similar to that due to the detuning of ks (cf. figures 4, 6b,
11): a narrow spread of the resonant wave around kr with comparable total energy.

5. Conclusions
We investigate nonlinear resonant interactions among the steady waves in the

Kelvin wake of a ship with constant forward speed and an (unsteady) plane ambient
wave. We identify the conditions under which third-order quartet interactions among
the ship and ambient waves become resonant along specific rays in the ship wake
specified by the wave vector of the incident wave (relative to the ship velocity). This
resonance generates a new propagating wave which grows and develops along the
resonance ray. The position of the resonance and the basic characteristics of the
generated waves are completely determined by the ship speed and the wave vector of
ambient waves.
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We obtain the mechanism and evolution of this resonance analytically using the
cubic Schrödinger equation and the Zakharov equation. The former is derived by a
multiple-scale approach with the assumption of constant wave vectors with amplitude
modulations across a resonance ray. The latter is obtained using a narrow-band
asymptotic analysis based on the third-order Zakharov differential–integral equation
including the detuning effect associated with the variation of the wave vector of ship
waves. The two solutions compare reasonably well along the resonance ray as well as in
the nearfield of the resonance where the detuning is negligible, but deviate qualitatively
with increasing distance from the ray. Solutions of the evolution equations elucidate
the characteristics of the resonance-generated waves, which manifest as persistent
soliton-like envelopes across the resonance ray.

As a further verification of the theoretical results, we perform direct nonlinear
simulations of this problem using an efficient high-order spectral method. The
resonance-generated wave is obtained in the simulations with the basic characteristics
and the (initial) growth of its amplitude comparing well with the predictions of the
theory.

The question remains open as to whether the resonance phenomenon we show can
be readily observed in a complex open ocean environment. The quartet resonance-
generated wave, initially of higher order (third order), grows with distance and
could in theory become comparable to other wave components in the ship wake.
Significantly, this wave is characterized by a specific wave vector, ray angle, and
amplitude variation with distance, all distinct from other wave components in the
system. These salient features facilitate the identification/detection of this wave
component from the complicated total wavefield. Our direct numerical simulation
confirms that this is indeed the case for a problem involving a single ambient wave.
The practical detection of such waves in a complex environment is not a main focus
of this paper, but we believe that the elucidation of the features and characteristic of
this resonance provides a basis for such detection.

We would like to acknowledge the comments and suggestions of Professor Chiang
C. Mei on an early presentation of this work. This research is supported financially
by grants from the Office of Naval Research.

Appendix. Derivation of the cubic nonlinear Schrödinger (NLS) equation
For n � 3, F (n), G(n) and H (n) in (3.6), (3.7) and (3.8) are given by

F (1) = 0, G(1) = 0, H (1) = φ
(1)
t , (A 1)

F (2) = −2
(
φ(1)

xx1
+ φ(1)

yy1

)
,

G(2) = −
[
ζ (1)Γzφ

(1) +
(
φ(1)2

x + φ(1)2

y + φ(1)2

z

)
t
+ 2φ

(1)
t t1

]
,

H (2) = φ
(1)
t1 + φ

(2)
t + ζ (1)φ

(1)
zt + 1

2

(
φ(1)2

x + φ(1)2

y + φ(1)2

z

)
,

⎫⎪⎪⎬
⎪⎪⎭ (A 2)

F (3) = −
[(

∂2

∂x2
1

+
∂2

∂y2
1

)
φ(1) + 2

(
φ(1)

xx2
+ φ(1)

yy2

)
+ 2

(
φ(2)

xx1
+ φ(2)

yy1

)]
, (A 3a)

G(3) = −
[
2φ

(1)
t t2 + φ

(1)
t1t1 + 2φ

(2)
t t1 + ζ (1)

(
Γzφ

(2) + 2φ
(1)
ztt1

)
+ ζ (2)Γzφ

(1)

+ 2
(
φ(1)

x φ(2)
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t
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x φ(1)
x1

+ φ(1)
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)
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(1)
t2 + φ
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φ

(2)
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(1)
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x φ(2)
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where Γ ≡ g∂/∂z + ∂2/∂t2. Without loss of generality, we rewrite the condition (2.3)
in the form

k1 = s2k2 + s3k3 + s4k4, ω1 = s2ω2 + s3ω3 + s4ω4, (A 4)

where s2, s3, s4 = ±1 depending on the sign combination in (2.3). We define, for
convenience, a space-fixed Cartesian coordinate system (o − xyz) with the x-axis
pointing in the direction of k1 and the z-axis upwards.

The first-order solution is the superposition of propagating waves which form a
resonant quartet:

φ(1) =

J∑
j

− g

2ωj

ekj z[iAje
iψj + c.c.], ζ (1) =

J∑
j

1

2
[Aje

iψj + c.c.], (A 5)

where ψj ≡ kj · x − ωj t , j = 1, 2, 3, 4, and the integer J denotes the number of
distinctive wave components in the quartet. For example, J = 4 if all four waves
in the quartet are different, while J = 3 if any two of the four waves are identical.

Let φ
(n)
1 , F

(n)
1 and G

(n)
1 be the terms in φ(n), F (n) and G(n) containing the factor eiψ1 .

In order for φ
(n)
1 to be non-trivial, the following solvability condition must be satisfied

(for any n): ∫ 0

−∞
F

(n)
1 ek1z dz = G

(n)
1 /g. (A 6)

Applying the condition (A 6) for n= 2, the second-order evolution equation for A1 is
obtained:

∂A1

∂t1
+ Cg1

∂A1

∂x1

= 0, (A 7)

where Cg1
= (1/2)ω1/k1 is the group velocity of the wave component k1. No resonance

occurs at the second order. The solutions of φ(2) and ζ (2) containing the factor
ei(sj ψj +s�ψ�) can be obtained:

φ
(2)
j,� = Tj,�A

γj

j A
γ�

� ekj,�zei(sj ψj +s�ψ�), (A 8)

ζ
(2)
j,� =

[
i

g
(sjωj + s�ω�)Tj,� +

kj + k�

4
+

g(kjk� − sj s�kj · k�)

2sj s�ωjω�

]
A

γj

j A
γ�

� ei(sj ψj +s�ψ�), (A 9)

where

kj = |kj | , kj,� = |sj kj + s�k�| , j, � = 2, 3, 4

Tj,� = − ig2(sj /ωj + s�/ω�)(kjk� − sj s�kj · k�)

2[gkj,� − (sjωj + s�ω�)]
, j, � = 2, 3, 4.

When sj = 1, A
γj

j = Aj while A
γj

j = A∗
j for sj = −1.
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The third-order evolution equation for A1 is obtained by applying the condition
(A 6) to F

(3)
1 and G

(3)
1 . As expected, this evolution equation is identical to the two-

dimensional cubic Schrödinger equation (see Mei et al. 2005) except for cubic terms
representing the interactions with other waves in the quartet, which appear in G

(3)
1 . In

terms of ψj , these resonant cases are: ψ1 = ψ1 + ψj − ψj and ψ1 = s2ψ2 + s3ψ3 + s4ψ4.
We have

G
(3)
1 = ig

J∑
j

ei(ψ1+ψj −ψj )C1,j,−j |Aj |2A1 + igei(s2ψ2+s3ψ3+s4ψ4)C2,3,4A
γ2

2 A
γ3

3 A
γ4

4 (A 10)

where the coefficients C2,3,4 and C1,j,−j are given by (A 13) below.
Applying the solvability condition (A 6) for n = 3, we obtain:(
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∂t2
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∂A1

∂x2

)
+ i

{
ω1
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3 A
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4

}
= 0. (A 11)

Combining (A 11) with (A 7), the evolution equation for A1 is finally obtained:(
∂A1

∂t
+ Cg1

∂A1

∂x

)
+ i

{
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8k2
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4

}
= 0, (A 12)

where A
γj

j = Aj , j=2,3,4, for sj = 1 and A
γj

j = A∗
j for sj = −1. The coefficient C2,3,4

takes the form
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where δ2,3,4 = 1/2 if s2k2 �= s3k3 �= s4k4, and otherwise, δ2,3,4 = 1. In (A 12), the
coefficients C1,j,−j , j =1, 2, 3, 4, can be determined from (A 13) by replacing
(s2, s3, s4, k2, k3, k4, ω2, ω3, ω4) with (1, 1, −1, k1, kj , kj , ω1, ωj , ωj ), respectively.

The evolution equation for A2 can be obtained from the above result by exchanging
k1 and k2 and replacing s2 by s1 with the x-axis pointing in the direction of k2. The
solutions for A3 and A4 can also be obtained similarly.

REFERENCES

Akylas, T. R. 1987 Unsteady and nonlinear effects near the cusp lines of the Kelvin ship-wave
pattern. J. Fluid Mech. 175, 333–342.

Benny, D. J. 1962 Nonlinear gravity wave interactions. J. Fluid Mech. 14, 577–589.

Benny, D. J. & Roskes, G. 1969 Wave instabilities. Stud. Appl. Maths 48, 377–385.

Booij, N., Ris, R. C. & Holthuijsen, L. H. 1999 A third-generation wave model for coastal regions.
Part 1. Model description and validation. J. Geophys. Res. 104, 7649–7666.

Brown, E. D., Buchsbaum, S. B., Hall, R. E., Penhum, J. P., Schmitt, K. F., Watson, K. M. &

Wyatt, D. C. 1989 Observations of nonlinear solitary wave packet in the Kelvin wake of a
ship. J. Fluid Mech. 204, 263–293.

Cao, Y 1991 Computation of nonlinear gravity waves by a desingularized boundary integral method.
PhD thesis, University of Michigan.

Crawford, D. R., Lake, B. M., Saffman, P. G. & Yuen, H. C. 1981 Stability of weakly nonlinear
deep-water waves in two and three dimensions. J. Fluid Mech. 105, 177–191.

Dommermuth, D. G. & Yue, D. K. P. 1987 A high-order spectral method for the study of nonlinear
gravity waves. J. Fluid Mech. 184, 267–288.

Dommermuth, D. G. & Yue, D. K. P. 1988 The nonlinear three-dimensional waves generated by a
moving surface disturbance. In Proc. 17th Symp. on Naval Hydro., Hague, Netherlands.

Eggers, K. & Schultz, W. W. 1992 Investigation on time-harmonic disturbances for inner-Kelvin-
angle wave packets. In 7th International Workshop on Water Waves and Floating Bodies. Val
de Reuil, France.

Fu, L. L. & Holt, B. 1982 SESAT view of oceans and sea ice with synthetic aperture radar. Jet
Propulsion Lab. Publ. 81–120.

Hall, H. & Buchsbaum, S. 1990 A model for the generation and evolution of an inner-angle soliton
in a Kelvin wake. In Proc. 18th ONR Symp. Naval Hydrodynamics, pp. 453–463.

Hasselmann, S., Hasselmann, K., Bauer, E., Janssen, P. A. E. M., Komen, G. J., Bertotti, L.,

Lionello, P., Guillaume, A., Cardone, V. C., Greenwood, J. A., Reistad, M., Zambresky,

L. & Ewing, J. A. 1988 The WAM model: A third generation ocean wave prediction model.
J. Phys. Oceanogr. 18, 1775–1810.

Krasitskii, V. P. 1994 On reduced equation in the Hamiltonian theory of weakly nonlinear surface
waves. J. Fluid Mech. 272, 1–20.

Li, J. J. & Tulin, M. P. 1999 On the stability and nonlinear dynamics of ocean-like wave systems
with energy continuously distributed in direction. J. Engng Maths 35, 59–70.

Liu, Y., Dommermuth, D. G. & Yue, D. K. P. 1992 A high-order spectral method for nonlinear
wave-body interactions. J. Fluid Mech. 245, 115–136.

Liu, Y. & Yue, D.K.P. 1998 On generalized Bragg scattering of surface waves by bottom ripples.
J. Fluid Mech. 356, 297–356.

Mei, C. C., Stiassnie, M. & Yue, D. K. P. 2005 Theory and Applications of Ocean Surface Waves.
World Scientific.

Mei, C. C. & Naciri, M. 1991 Note on ship oscillations and wake solitons. Proc. R. Soc. Lond. A
432, 535–546.

Munk, W. H., Scully-Power, P. & Zachariasen, F. 1987 Ships from space. Proc. R. Soc. Lond. A
412, 231–254.

Newman, J. N. 1971 Third order interactions in the Kelvin ship wave systems. J. Ship Res. 15, 1–10.

Newman, J. N. 1977 Marine Hydrodynamics. The MIT Press.

Newman, J. N. 1987 Evaluation of the wave-resistance Green function. Part 1. The double integral.
J. Ship Res. 31, 79–90.



Interactions between Kelvin waves and ambient waves 197

Newman, J. N. 1992 The Green function for potential flow in a rectangular channel. J. Engng Math.
26, 51–59.

Peregrine, D. H. 1971 A ship’s waves and its wake. J. Fluid Mech. 49, 353–360.

Phillips, O. M. 1960 Unsteady gravity waves of finite amplitude. Part 1. The elementary interactions.
J. Fluid Mech. 9, 193–217.

Reed, A. M. & Milgram, J. H. 2002 Ship wakes and their radar images. Annu. Rev. Fluid Mech.
34, 469–502.

Schwartz, L. W. 1974 Computer extension and analytic continuation of Stokes’ expansion for
gravity waves. J. Fluid Mech. 62, 553–578.

Shemdin, O. 1987 SAR imaging of ship wakes in the gulf of Alaska. Report, Jet Propulsion Lab.

Tulin, M. & Miloh, T. 1990 Ship internal waves in a shallow thermocline: the supersonic case.
Proc. 18th Symp. Naval Hydrodynamics.

Yue, D. K. P. & Mei, C. C. 1980 Forward diffraction of Stokes waves by a thin wedge. J. Fluid
Mech. 99, 33–52.

Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid.
J. Appl. Mech. Tech. Phys. 9, 190–194 (English translation.)

Zhu, Q. 2000 Features of nonlinear wave-wave and wave-body interactions. PhD Thesis,
Massachusetts Institute of Technology.

Zhu, Q., Liu, Y., Tjavaras, A. A., Yue, D. K. P. & Triantafyllou, M. S. 1999 Mechanics of
nonlinear short-wave generation by a moored near-surface buoy. J. Fluid Mech. 381, 305–335.


